

University of Stuttgart Institute of Physical Chemistry

Colloquium of the Institute of Physical Chemistry

Asst. Prof. Dr. Martin F. Haase

Van't Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute of Nanomaterials Science, Utrecht University

Nanostructured Fluid-Bicontinuous Gels for Energy Efficient Molecular Separations

Fluid-bicontinuous gels are unique materials that allow two distinct fluids to interact through a percolating, rigid scaffold (Figure 1).^[1] Current restrictions for their use are the large fluid-channel sizes (>5 μ m), limiting the fluid–fluid interaction surface-area, and the inability to flow liquids through the channels.^[2] In this work a scalable synthesis route of nanoparticle stabilized fluid-bicontinuous gels with channels sizes below 500 nm and specific surface areas of 2 m² cm⁻³ is introduced.^[3] Moreover, it is demonstrated that liquids can be pumped through the fluid-bicontinuous gels. The fast liquid flow in the fluid-bicontinuous gel facilitates their use for molecular separations in continuous-flow liquid–liquid extraction. Together with the high surface areas, liquid flow through fluid-bicontinuous gels enhances their potential as highly permeable porous materials with possible uses as microreaction media, fuel-cell components, and separation membranes.

Figure 1: Left: confocal microscopy shows that the fluid bicontinuous gel is composed of oil (black), water (magenta) and ultra-thin layer of nanoparticles (green). Right: a scanning electron microscopy image reveals the small channels.

[1] Stratford, Kevin, et al., Science 309.5744 (2005): 2198-2201.

[2] Haase, Martin F., Kathleen J. Stebe, and Daeyeon Lee, Advanced Materials 27.44 (2015): 7065-7071.

[3] Khan, Mohd A., et al., Advanced Materials (2022): 2109547.

Lecture hall: V55.21 (Pfaffenwaldring 55, 70569 Stuttgart)

Online meeting link: <u>https://kurzelinks.de/ipc-colloquium</u>

Number: 2732 613 7645

Password: 3ZdPRM3XhV8

